Complex Analysis Assignment 1

Anwesha Ghosh

Monsoon 2025

Problem 1

Consider the function (defined using power series in class)

$$\sin:\mathbb{C}\to\mathbb{C}$$

$$z \mapsto \sin(z)$$

Is it a bounded function? If yes, give a proof. If no, give a couterexample with explanation.

Solution

The function sin(z) is not a bounded function over the complex plane.

Proof. Let us look at the power series definition of $\sin(z)$:

$$\sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

Here, z = x + iy where $x, y \in \mathbb{R}$. Now, let us expand this.

$$\sin(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots$$

Substituting z = x + iy:

$$\sin(x+iy) = (x+iy) - \frac{(x+iy)^3}{3!} + \frac{(x+iy)^5}{5!} - \dots$$

If $y=0 \implies \sin(x) \in \mathbb{R}^2$. But we want $\sin(z)$ to be in \mathbb{C} . So, we consider the case where

 $x = 0 \implies \sin(iy).$

$$\sin(iy) = iy - \frac{(iy)^3}{3!} + \frac{(iy)^5}{5!} - \frac{(iy)^7}{7!} + \dots$$

$$= iy + \frac{i^3y^3}{3!} - \frac{i^5y^5}{5!} + \frac{i^7y^7}{7!} - \dots$$

$$= iy + \frac{iy^3}{3!} + \frac{iy^5}{5!} + \frac{iy^7}{7!} + \dots$$

$$= i\left(y + \frac{y^3}{3!} + \frac{y^5}{5!} + \frac{y^7}{7!} + \dots\right)$$

$$= i\sum_{n=0}^{\infty} \frac{y^{2n+1}}{(2n+1)!}$$

Let us denote the series $\sum_{n=0}^{\infty} \frac{y^{2n+1}}{(2n+1)!}$ as S(y).

Now, $\forall y \geq 0 (\in \mathbb{R}), S(y) \geq y$. As $y \to \infty$, $S(y) \to \infty$. Therefore, $\sin(iy) = iS(y)$ also becomes unbounded as $y \to \infty$.

Problem 2

Observe that

$$\lim_{n \to \infty} e^{2\pi i n} = 1.$$

Let $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ such that

$$f(z) := e^{1/z}.$$

Show that for any complex number c there exists a sequence $\{c_n\}_{n=1}^{\infty}$ of complex numbers such that

$$\lim_{n \to \infty} c_n = 0, \quad \lim_{n \to \infty} f(c_n) = c.$$

Solution

From our observation, we know that $\lim_{n\to\infty} e^{2\pi in} = 1$. This tells us that the exponential function is periodic. So, $\lim_{n\to\infty} e^{w+2\pi in} = e^w$.

Claim: For every $c \in \mathbb{C}$ there exists a sequence $\{c_n\}_{n=1}^{\infty}$ such that $\lim_{c_n \to \infty} f(c_n) = c$.

Proof. We can divide this proof into two cases, based on the value of c.

Case 1: c = 0

Let $c_n = \frac{1}{-n}$ where $n \in \mathbb{R}^+$.

Then, as $n \to \infty$, $c_n \to 0$ and $f(c_n) = e^{1/c_n} = e^{-n}$. We know $\lim_{n \to \infty} f(c_n) = \lim_{n \to \infty} e^{-n} = 0$.

Case 2: $c \neq 0$

Let us construct a sequence $\{c_n\}_{n=1}^{\infty}$ such that it satisfies the conditions of the problem statement.

Choose $w \in \mathbb{C}$ such that $e^w = c$. This is possible since the exponential function is surjective onto $\mathbb{C} \setminus \{0\}$. Now, for $n \in \mathbb{N}$, define the sequence:

$$c_n = \frac{1}{w + 2\pi i n}$$

Also, as $n \to \infty$, $w + 2\pi i n \to \infty$ and hence $c_n \to 0$.

Now, we plug this in $f(c_n)$:

$$f(c_n) = e^{1/c_n} = e^{w+2\pi i n} = e^w \cdot e^{2\pi i n} = c \cdot 1 = c$$

So, $\lim_{n\to\infty} f(c_n) = c$.

 \therefore We have constructed a sequence $\{c_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} c_n = 0$ and $\lim_{n\to\infty} f(c_n) = c$ for any $c \in \mathbb{C}$.

Problem 3

Let $U \subseteq \mathbb{C}$ be an open subset and $f: U \to \mathbb{C}$ be complex differentiable everywhere. Show the following:

- (1) If f is real-valued then f is constant.
- (2) If Re(f) is constant then f is constant.
- (3) If |f| is constant then f is constant.

Solution (1)

Proof. We know that,

$$f: U \to \mathbb{C}$$
$$f(z) = u(x, y) + iv(x, y)$$

where u(x,y) = Re(f) and v(x,y) = Im(f).

Since f is real-valued, $v(x,y) = 0 \forall (x,y) \in U$.

Now, since f is complex differentiable everywhere in U, it satisfies the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

Substituting v(x, y) = 0:

$$\frac{\partial u}{\partial x} = 0$$
 and $\frac{\partial u}{\partial y} = 0$

This implies that u is constant throughout U. Therefore, $f(z) = u(x,y) + i \cdot 0 = u(x,y)$ is constant.

Solution (2)

Proof. Given that Re(f) is constant, let Re(f) = c for some constant $c \in \mathbb{R}$. Thus, we can write:

$$f(z) = c + iv(x, y)$$

where v(x, y) = Im(f).

Since f is complex differentiable everywhere in U, it satisfies the Cauchy-Riemann equations. Now, substituting u(x, y) = c:

$$\frac{\partial u}{\partial x} = 0$$
 and $\frac{\partial u}{\partial y} = 0$

This implies that:

$$\frac{\partial v}{\partial y} = 0$$
 and $-\frac{\partial v}{\partial x} = 0$

Thus, $\frac{\partial v}{\partial x} = 0$ and $\frac{\partial v}{\partial y} = 0$, which means v is constant throughout U. Therefore, $f(z) = c + i \cdot v(x, y)$ is constant.

Solution (3)

Proof. Given that |f| is constant, let |f| = r for some constant $r \ge 0$. Thus, we can write:

$$|f(z)| = \sqrt{u(x,y)^2 + v(x,y)^2} = r$$

Squaring both sides, we get:

$$u(x,y)^2 + v(x,y)^2 = r^2$$

Differentiating both sides with respect to x and y:

$$2u\frac{\partial u}{\partial x} + 2v\frac{\partial v}{\partial x} = 0 \quad (1)$$

$$2u\frac{\partial u}{\partial y} + 2v\frac{\partial v}{\partial y} = 0 \quad (2)$$

Since f is complex differentiable everywhere in U, it satisfies the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad (3)$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \quad (4)$$

Substituting equations (3) and (4) into (1) and (2): From (1):

$$2u\frac{\partial u}{\partial x} + 2v\left(-\frac{\partial u}{\partial y}\right) = 0$$

From (2):

$$2u\frac{\partial u}{\partial y} + 2v\frac{\partial u}{\partial x} = 0$$

This can be written in matrix form:

$$\begin{pmatrix} u & -v \\ v & u \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

The determinant of the coefficient matrix is:

$$(u^2 + v^2) = r^2$$

Since $r \neq 0$, the determinant is non-zero, which implies that the only solution to the system is

$$\frac{\partial u}{\partial x} = 0$$
 and $\frac{\partial u}{\partial y} = 0$

This means that u is constant throughout U. Substituting back into the equation $u(x,y)^2 + v(x,y)^2 = r^2$, we find that v must also be constant. Therefore, f(z) = u(x,y) + iv(x,y) is constant.

Problem 4

Suppose $I:\mathbb{C}^2 \to \mathbb{R}^4$ and $J:\mathbb{R}^4 \to \mathbb{C}^2$ are such that

$$I(a+ib, c+id) = (a, b, c, d), \quad J(a, b, c, d) = (a+ib, c+id).$$

Answer the following questions with justifications:

- (1) Suppose V is a 1-dimensional vector subspace of the vector space \mathbb{C}^2 over the field \mathbb{C} . Is I(V) a 2-dimensional vector subspace of \mathbb{R}^4 over the field \mathbb{R} ?
- (2) Suppose W is a 2-dimensional vector subspace of the vector space \mathbb{R}^4 over the field \mathbb{R} . Is J(W) a 1-dimensional vector subspace of \mathbb{C}^2 over the field \mathbb{C} ?

Solution (1)

Proof. Let us first show that I is a real linear transformation. We know that for any $z_1, z_2 \in \mathbb{C}^2$ and $\alpha, \beta \in \mathbb{R}$:

$$I(\alpha z_1 + \beta z_2) = \alpha I(z_1) + \beta I(z_2)$$

This shows that I is a real linear transformation.

Now, let V be a 1-dimensional vector subspace of \mathbb{C}^2 over \mathbb{C} . This means that there exists a non-zero vector $v \in \mathbb{C}^2$ such that:

$$V = \{\lambda v : \lambda \in \mathbb{C}\}$$

Let $v = (z_1, z_2)$ where $z_1, z_2 \in \mathbb{C}$ and $z_1 = a_1 + ib_1, z_2 = a_2 + ib_2$ where $a_1, b_1, a_2, b_2 \in \mathbb{R}$. Then,

$$I(v) = I(z_1, z_2) = (a_1, b_1, a_2, b_2) \in \mathbb{R}^4$$

Now, consider any vector $w \in V$.

$$w = \lambda v = \lambda(z_1, z_2) = (\lambda z_1, \lambda z_2)$$

where $\lambda = x + iy$ for some $x, y \in \mathbb{R}$. Then,

$$I(w) = I(\lambda z_1, \lambda z_2) = (xa_1 - yb_1, xb_1 + ya_1, xa_2 - yb_2, xb_2 + ya_2)$$

The set I(V) is spanned by the vectors:

$$(a_1, b_1, a_2, b_2)$$
 and $(-b_1, a_1, -b_2, a_2)$

Since these two vectors are linearly independent (as $v \neq 0$), I(V) is a 2-dimensional vector subspace of \mathbb{R}^4 over the field \mathbb{R} .

Solution (2)

Proof. No, J(W) is not necessarily a 1-dimensional vector subspace of \mathbb{C}^2 over the field \mathbb{C} . Let us construct a counterexample.

Consider the 2-dimensional vector subspace W of \mathbb{R}^4 spanned by the vectors:

$$(1,0,0,0)$$
 and $(0,0,1,0)$

Then,

$$J(1,0,0,0) = (1+i0,0+i0) = (1,0)$$

$$J(0,0,1,0) = (0+i0,1+i0) = (0,1)$$

The set J(W) contains vectors (x,0) and (0,y) for $x,y \in \mathbb{R}$. So, obviously, they don't contain any complex scalar multiples of each other. This means that J(W) is not closed under multiplication by complex scalars. Therefore, J(W) is not a vector subspace of \mathbb{C}^2 over the field \mathbb{C} , let alone being 1-dimensional.

Problem 5

Answer the following questions with justifications:

(1) Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = |x|^2$. Is f real differentiable everywhere? Now consider the extended function $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = |z|^2$. Is f complex differentiable everywhere?

(2) Let $g: \mathbb{R} \to \mathbb{R}$ be such that

$$g(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Is g real differentiable everywhere? Now consider the extended function $g: \mathbb{C} \to \mathbb{C}$ defined by

$$g(z) = \begin{cases} z^2 \sin(\frac{1}{z}), & \text{if } z \neq 0, \\ 0, & \text{if } z = 0. \end{cases}$$

Is g complex differentiable everywhere?

Solution (1)

Proof. The function $f(x) = |x|^2$ is real differentiable everywhere on \mathbb{R} . The derivative is given by:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = 2x$$

Thus, f'(x) = 2x exists for all $x \in \mathbb{R}$.

Now, consider the extended function $f(z) = |z|^2$ for $z \in \mathbb{C}$. We can write:

$$f(z) = x^2 + y^2$$

To check if f is complex differentiable, we use the Cauchy-Riemann equations. Let $u(x,y) = x^2 + y^2$ and v(x,y) = 0. The Cauchy-Riemann equations state that:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

Calculating the partial derivatives:

$$\frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = 2y, \quad \frac{\partial v}{\partial x} = 0, \quad \frac{\partial v}{\partial y} = 0$$

Substituting these into the Cauchy-Riemann equations:

$$2x = 0 \quad \text{and} \quad 2y = 0$$

These equations hold only at the point (0,0). Therefore, $f(z) = |z|^2$ is not complex differentiable everywhere in \mathbb{C} , only at z = 0.

Solution (2)

Proof. Real differentiability: For $x \neq 0$,

$$g'(x) = \frac{d}{dx} (x^2 \sin(1/x)) = 2x \sin(1/x) + x^2 \cos(1/x) \cdot (-1/x^2) = 2x \sin(1/x) - \cos(1/x).$$

At x = 0, we check the difference quotient:

$$\lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin(1/h)}{h} = \lim_{h \to 0} h \sin(1/h).$$

Since $|h\sin(1/h)| \le |h| \to 0$, the limit exists and equals 0. Thus

$$g'(0) = 0.$$

Therefore g is differentiable at every real x.

Complex differentiability:

At z = 0 we check the derivative:

$$\lim_{z \to 0} \frac{g(z) - g(0)}{z} = \lim_{z \to 0} z \sin\left(\frac{1}{z}\right).$$

Take $z_n = \frac{1}{n} \to 0$. Then

$$z_n \sin\left(\frac{1}{z_n}\right) = \frac{1}{n} \sin(n).$$

Since $|\sin(n)| \le 1$, we have

$$\left| \frac{1}{n} \sin(n) \right| \le \frac{1}{n} \to 0.$$

So the limit along the real axis is 0.

Take $w_n = \frac{i}{n} \to 0$. Then

$$\frac{1}{w_n} = -in, \quad \sin\left(\frac{1}{w_n}\right) = \sin(-in).$$

Using $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$,

$$\sin(-in) = \frac{e^{i(-in)} - e^{-i(-in)}}{2i} = \frac{e^n - e^{-n}}{2i}.$$

Hence

$$w_n \sin\left(\frac{1}{w_n}\right) = \frac{i}{n} \cdot \frac{e^n - e^{-n}}{2i} = \frac{e^n - e^{-n}}{2n}.$$

As $n \to \infty$, this grows without bound.

Along the real axis, the limit is 0, while along the imaginary axis, the difference quotients are unbounded. Therefore

$$\lim_{z \to 0} z^2 \sin\left(\frac{1}{z}\right)$$

does not exist as a finite complex number. Hence g is not complex differentiable at 0.

Problem 6

Suppose $U \subseteq \mathbb{C}$ is an open set, and let $h: U \to \mathbb{C}$ be a function which is complex differentiable everywhere. Show that the function $H: U \to \mathbb{C}$ defined by

$$H(z) := \overline{h(\overline{z})}$$

is also complex differentiable everywhere.

Solution

Proof. Let h(z) = u(x, y) + iv(x, y) where z = x + iy and $u, v : U \to \mathbb{R}$. Since h is complex differentiable everywhere in U, it satisfies the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

Now, consider the function $H(z) = \overline{h(\overline{z})}$. Substituting z = x + iy:

$$H(z) = \overline{h(x-iy)} = \overline{u(x,-y) + iv(x,-y)} = u(x,-y) - iv(x,-y)$$

Let U(x,y) = u(x,-y) and V(x,y) = -v(x,-y). Thus, we can write:

$$H(z) = U(x, y) + iV(x, y)$$

To show that H is complex differentiable, we need to verify that U and V satisfy the Cauchy-Riemann equations:

$$\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y}$$
 and $\frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x}$

Calculating the partial derivatives:

$$\frac{\partial U}{\partial x} = \frac{\partial u}{\partial x}(x, -y), \quad \frac{\partial U}{\partial y} = -\frac{\partial u}{\partial y}(x, -y)$$

and

$$\frac{\partial V}{\partial x} = -\frac{\partial v}{\partial x}(x, -y), \quad \frac{\partial V}{\partial y} = -\left(-\frac{\partial v}{\partial y}(x, -y)\right) = \frac{\partial v}{\partial y}(x, -y)$$

Now, substituting these into the Cauchy-Riemann equations:

$$\frac{\partial U}{\partial x} = \frac{\partial u}{\partial x}(x, -y) = \frac{\partial v}{\partial y}(x, -y) = \frac{\partial V}{\partial y}$$

and

$$\frac{\partial U}{\partial y} = -\frac{\partial u}{\partial y}(x, -y) = -\left(-\frac{\partial v}{\partial x}(x, -y)\right) = -\frac{\partial V}{\partial x}$$

Thus, U and V satisfy the Cauchy-Riemann equations, which implies that H is complex differentiable everywhere in U.